Robust Classification Using Contractive Hamiltonian Neural ODEs

نویسندگان

چکیده

Deep neural networks can be fragile and sensitive to small input perturbations that might cause a significant change in the output. In this letter, we employ contraction theory improve robustness of ODEs (NODEs). A dynamical system is contractive if all solutions with different initial conditions converge each other exponentially fast. As consequence, become less relevant over time. Since NODEs data corresponds condition systems, show contractivity mitigate effect perturbations. More precisely, inspired by Hamiltonian dynamics, propose class (CH-NODEs). By properly tuning scalar parameter, CH-NODEs ensure design trained using standard backpropagation. Moreover, enjoy built-in guarantees non-exploding gradients, which well-posed training process. Finally, demonstrate on MNIST image classification problem noisy test data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Stability for Parametric Linear ODEs

Content: A logical tool in robust control theory for systems of parametric inhomogeneous linear ODEs.

متن کامل

Robust Online Hamiltonian Learning

Christopher E. Granade∗,1, 2 Christopher Ferrie, 3 Nathan Wiebe, and D.G. Cory 4, 5 1 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada 2 Department of Physics, University of Waterloo, Waterloo, Ontario, Canada 3 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada 4 Department of Chemistry, University of Waterloo, Waterloo, Ontar...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Robust Nonlinear Control using Neural

In this article, the innuence of uncertainty on weights and biases of neural networks on the input/output behavior is investigated. Moreover, a uncertainty description of uncertain neural networks is derived and an appropriate norm bound of the model uncertainty , which is needed for robust control design, is derived. Finally, feedback linearization is used in order to fully incorporate neural ...

متن کامل

Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics Abstract Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics

Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics Kiam Choo Master of Science Graduate Department of Computer Science University of Toronto 2000 We consider a feedforward neural network model with hyperparameters controlling groups of weights. Given some training data, the posterior distribution of the weights and the hyperparameters can be obtained by alternately up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Control Systems Letters

سال: 2023

ISSN: ['2475-1456']

DOI: https://doi.org/10.1109/lcsys.2022.3186959